Équations du second degré à une inconnue

Méthode F : Cas spécial : $ax^2 + c = 0$

1ère étape : Il faut absolument isoler le terme en x^2 dans le premier membre :

$$x^2 = \frac{-c}{a}$$
$$x^2 = 9$$

2e étape:

Si
$$\frac{-c}{a}$$
 < 0 (est négatif), alors $S = \{\}$
Si $\frac{-c}{a} = 0$ (est nul), alors $S = \{0\}$

Si
$$\frac{a}{c} = 0$$
 (est nul), alors $S = \{0\}$

Si
$$\frac{-c}{a} > 0$$
 (est positif), alors $S = \{\sqrt{\frac{-c}{a}}; -\sqrt{\frac{-c}{a}}\}$

3e étape:

$$S = \{\sqrt{9}; -\sqrt{9}\}$$
$$S = \{3; -3\}$$

☞ ici l'exemple 2

Exemple 2

$$(2x-1)(2x+1) = x^2 - 1$$

1ère étape :

$$4x^{2} - 1 = x^{2} - 1$$
$$3x^{2} = 0$$
$$x^{2} = \frac{0}{3}$$
$$x^{2} = 0$$

2e étape :

$$\frac{-c}{a} = 0$$

3e étape :

$$S = \{0\}$$

☞ ici l'exemple 3

Retour

Exemple 3

$$(2x-1)(2x+1) = -2$$

1ère étape :

$$4x^{2} - 1 = -2$$
$$4x^{2} = -1$$
$$x^{2} = \frac{-1}{4}$$

2e étape :

$$\frac{-1}{4} < 0$$

3e étape :

$$S = \{\}$$

Retour